4 N
STRIPS planning

A set of operators, where each operator has

— aset of parameters

— aset of preconditions

— aset of effects, consisting of add effects and delete effects
o A set of objectsto instatiate an operator’ s parameters

— afully instantiated operator is called an action

* A set of propositions representing the initial state
» A set of propositions representing the goals

* Planning problem: Find a sequence of actions that, starting in
_ theinitial state, achieve all the goals -

Nayak CS 329A, Handout #10

-

Simple Rocket domain

e Figure 1 from Blum and Furst 1997

/

Nayak

CS 329A, Handout #10

4 N
Approaches to STRIPS planning

« Search through the space of world states

— forward search, regression search, bidirectional search,
means-ends analysis, ...

« Search through the space of plans
— total order planning or partial order planning
« Search through a planning graph

o /

Nayak CS 329A, Handout #10

-

Graphplan

e Construct agraph that represents all valid plansup to a

maximum length

e Searchthegraph for avalid plan

/

Nayak

CS 329A, Handout #10

-
Valid plans in Graphplan

A valid planis
A set of actions

Specified times for each action

plan at timet

time t—1
K. Goals are true at the final time step

— Includes special no-op or frame actions

— actions at the same time don’t interfere with each other
 Preconditions of actions at time 1 must be in theinitial state
Preconditions of actions at timet > 1 must be made true by the

— propositionstrue at timet > 1 are the effects of actions at

/

Nayak

CS 329A, Handout #10

4 ™
A valid plan for a Rocket problem

at AL —load RL A af AL
at B L%Ioad RL B\a)/B/L
atRL ®

at RL —move RL P\~ at/R’f
fued R ® \ fuel R ® \ fued R ® fued R
xinAR ® \ inAR —unload RP A |-in AR
inBR ® \ inBR%unloadRPB\in/B/ﬁ
\atRP ® \ at RP
\mAL
K atBL/

Nayak CS 329A, Handout #10

/

o

Planning graphs

Like valid plans without the restriction that actions at the same
time don't interfere with each other

A planning graph is aleveled graph with
— two kinds of nodes (propositions and actions)
o alternates between proposition levels and action levels

— three kinds of edges (preconditions, add effects, delete
effects)

An action isat action level 1 if all its preconditions are at
proposition level |

A proposition isat proposition level | > 1, if it isan add effect
of some action (including no-op actions) at level i—1

/

Nayak CS 329A, Handout #10

/

Planning graph for a Rocket problem

e Figure 2 from Blum and Furst 1997

/

Nayak CS 329A, Handout #10

/

Mutual exclusions

e Two actions at the same level are mutually exclusive if no

valid plan could possibly contain both of them

* Two propositions at the same level are mutually exclusive if

no valid plan could possibly make themboth true

/

Nayak CS 329A, Handout #10

4 ™
Propagating mutual exclusions

e Two actions at the same level are mutually exclusive if

— Interference: if elither action deletes a precondition or add
effect of the other

— Competing needs: If aprecondition of one action and a
precondition of the other action are mutually exclusive

e Two propositions at the same level are mutually exclusive if

— all ways of creating one proposition are exclusive of all
ways of creating the other proposition

o /

Nayak CS 329A, Handout #10

4 N
Graphplan

function Graphplan(Ops, Objs, InitSate, Goals)

Initialize G with proposition level 1 using InitSate
for 1 = 1incrementing by 1 do
If proposition level | contains all Goals and
no two goals are mutually exclusive at level | then
Search G for avalid plan to achieve Goals
If G containsavalid plan then return the plan
endif
Augment G with action level | and proposition level 1+1
If termination condition is satisfied then return “no plan”
endfor

end Graphplan

/

Nayak CS 329A, Handout #10

-

Size of the planning graph

 Theorem: Consider a planning problem with n objects, p

propositionsin theinitial state, m operators each having a
constant number of parameters. Let | be the length of the
longest add list Then the size of at-level planning graph, and

the time needed to create the graph, are polynomial inn, m, p,
|, and t

/

Nayak CS 329A, Handout #10

4 N
Searching the graph for avalid plan

function Solve-goals(goal-set, level)
if level == 1then
if InitState E goal-set then return ({})
else
If IsMemoized(goal-set, level) then return ()
new-actions = Select-actions(goal-set, {}, level)
If new-actions?! () then
return new-actions
else
Memoi ze(goal-set, level)
return ()
endif
endif
end Solve-goals

o /

Nayak CS 329A, Handout #10

4 ™
Selecting actions at agiven level

function Select-actions(goal-set, actions, level)
If goal-set ={} then
retur n Solve-goal s(preconditions(actions), level —1)
else
goal = pop(goal-set)
If goal achieved by some action in actions then
return Select-actions(goal-set, actions, level)
else
for each action that achieves goal and
not mutex with any action in actions do
new-actions = Select-actions(goal -set, actions E {action}, level)
If new-actions?® () then return new-actions
endfor
return ()
endif
K endif /

Nayak CS 329A, Handout #10

Example
~t R1 P unload R1L P A
unload R2 P A x
INR1A atAP
oo unload R2 P B
INR1B unload RLP B aBpP
atRzN unloadeNC%atCl\I
INR2C unload R2 N C

/

Nayak

CS 329A, Handout #10

-

Experimental results

/

Nayak

CS 329A, Handout #10

4 N
Accounting for Graphplan’s efficiency

e Mutual exclusions

e Consideration of parallel plans
« Memoizing

e Low-level costs

o /

Nayak CS 329A, Handout #10

4 ™
Leveling off

« Lemma: If no valid plan exists, then there exists a proposition
level P such that all future proposition levels are identical to P

— 1.e., contain the same propositions and mutual exclusions
— graph is said to have leveled off after P
e Corollary: No solution exists if
— agoal does not appear inP or
— P has mutually exclusive goals

o /

Nayak CS 329A, Handout #10

-

Termination condition

 Let S denote the set of memoized goal sets at level | after an

unsuccessful staget

 Theorem: If the graph has leveled off at some level nand a
staget has passed inwhich | S | =| S|, then no valid plan

exists

/

Nayak

CS 329A, Handout #10

